Bit Hacks

二进制表示

反补码性质

八进制、十六进制

位运算符

Set the kth Bit

y = x | (1 << k);

Clear the kth Bit

y = x &(1 << k);

Toggle the kth Bit

y = x ^ (1 << k);

Extract a Bit Field

(x % mask) >> shift;
//mask 将待抽取的位 置一

extract1

Set a Bit Field

x = (x & ~mask) | (y << shift);
//For safety’s sake:((y << shift) & mask)

set1

Swap

  • Ordinary Swap

      t = x;
      x = y;
      y = t;
    
  • No-Temp Swap

      x = x ^ y;
      y = x ^ y;
      x = x ^ y;
    

    swap1

    Why it works : XOR is its own inverse (x ^ y) ^ y = x

    Performance : poor at exploiting instruction-level parallelism(slower than the original code)

Minimum of Two Integers

  • Ordinary Minimum

      r = (x < y) ? x : y;
    

    Performance : A mispredicted branch empties the processor pipeline Caveat : The compiler is usually smart enough to optimize away the unpredictable branch, but maybe not.

  • No-Branch Minimum

      r = y ^ ((x ^ y) & -(x < y));
    

    min1

Merging Two Sorted Arrays

merge1

if branch is predictable: most of the time it retrun true, and once it return false you are never going to look at that again. it is predictable = it can do prefetching efficiently

Modular Additon

Lecture-3-Bit-Hacks_30

  • n 是 2 的幂
  • z 可能小于 n
  • 同 minimum 方法

Round up to a Power of 2

进一至 2 的幂次 Lecture-3-Bit-Hacks_31

Lecture-3-Bit-Hacks_41

  • 注意向右填充所有位的方法

  • 这是一种处理边界条件的方法

Least-Significant 1

最小的 1 Lecture-3-Bit-Hacks_43

Log Base 2 of a Power of 2

课堂表演魔术-利用德布鲁因序列的数学性质

Lecture-3-Bit-Hacks_44

Lecture-3-Bit-Hacks_46

  • 德布鲁因序列

n Queens Problem

Lecture-3-Bit-Hacks_47

  • 每一行从左往右试 符合就下一行。若都不符合就上一行继续往后试

Lecture-3-Bit-Hacks_58

  • 三个向量 分别对应下文三图

Lecture-3-Bit-Hacks_59

Lecture-3-Bit-Hacks_60

Lecture-3-Bit-Hacks_61

Population Count

Lecture-3-Bit-Hacks_62

  • 留意清除最低位的 1 的使用
  • 数字小的时候才好用

Lecture-3-Bit-Hacks_63

  • 内存操作的成本是性能的主要瓶颈

Lecture-3-Bit-Hacks_64

  • 这里加法是真加法 不是或

Lecture-3-Bit-Hacks_65

Lecture-3-Bit-Hacks_66

Lecture-3-Bit-Hacks_67

  • popcount 指令比自己编码快很多

英语词汇笔记

单词 解释
binary 二进制
prefix 前置
toggle 切换
prefetching 预取
Modular
boundary case 边界条件

results matching ""

    No results matching ""